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Satisfying the quality requirement of products in multistage machining processes (MMPs) is significant and challenging
nowadays. In spite of the success of the stream of variation (SoV) theory in variation propagation modelling for MMPs, the
absence of elastic deformation variations could be an important factor that limits its application in variable stiffness structure
(VSS) workpieces. To this end, a generic variation propagation framework in MMPs for VSS workpieces is established,
incorporating the induction and propagation of elastic deformation variations. Region division strategy is adopted according
to the characteristics of VSS workpieces, and the analytic solutions of elastic deformation in different regions are solved by
contact theory and elastic theory. The effectiveness and accuracy of the proposed model are verified by a six-stage machining
process on a four-cylinder engine block, and the proposed model is compared with the conventional SoV model resulting in
a significant improvement on quality prediction.

Keywords: Multistage machining processes; variation propagation modelling; variable stiffness structure; elastic
deformation

1. Introduction

Multistage machining processes (MMPs) are widely adopted in manufacturing industry to obtain a high-quality product
by removing materials from a rough-cast. Satisfying dimensional and geometric precision of key product characteristics
(KPCs) from MMPs is significant, yet challenging nowadays (Shi 2006). For a particular stage, quality features deviate
from designed target values due to imperfections on fixture locators and variations during machining. If some of these
deviating features are adopted as datum features at downstream stages, their deviations will be propagated and accumulated,
which will finally affect the machining accuracy of KPCs (Duan and Wang 2013; Arizono, Yoshimoto, and Tomohiro 2020).
Since the deviation analysis of KPCs is of great concern in quality grading (Yanıkoğlu and Denizel 2020), manufacturing
system monitoring (Du et al. 2015) and preventive maintenance integration (Rezaei-Malek et al. 2019a; Zhao et al. 2020),
it is desirable to develop a mathematical model that explicitly describes the intrinsic variation induction and propagation
in MMPs. In existing researches, the most commonly used methods are the Markov modelling and the theory of stream of
variation (SoV).

The basis of the Markov model is the ‘no memory’ Markov chain. The feature is similar to the multistage process, i.e.
the random variable only depends on its previous value. Therefore, some scholars used the Markov method in MMPs (Du
et al. 2015; Behnamian et al. 2017; Liu, Du, and Xi 2018; Jia and Zhang 2019). However, this method can only give the
qualified probability of the characteristics, which is relatively rough for the accurate solution of KPC deviations. The theory
of SoV reveals the mapping relationship between key control characteristics (KCCs) and KPCs and it is an effective method
in researching variation propagation rules of MMPs (Shi 2006). Since Hu and Koren (1997) firstly proposed this theory in
automobile assembly, the SoV model for multistage assembly processes (MAPs) has received extensive attention (Jin and
Shi 1999; Mantripragada and Whitney 1999; Guo et al. 2016; Genta, Galetto, and Franceschini 2018). Meanwhile, in MMPs,
variation modelling method by the SoV theory has been the hotspot in recent two decades. Huang, Shi, and Yuan (2003)
and Djurdjanovic and Ni (2003) proposed an approximately linearised but implicit state space model to express variation
propagation for MMPs. Zhou, Huang, and Shi (2003) explored the vectorial deviation representation and proposed a generic
linear state space model in terms of differential motion vector (DMV) to describe the SoV. This work deduced detailed
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mathematical expressions of datum-induced variation and fixture-induced variation, and it was known as the conventional
SoV model. Subsequently, this model was further expanded in fixture layouts (Loose, Zhou, and Ceglarek 2007; Abellan-
Nebot and Liu 2013; Yang, Jin, and Li 2017b), application objects (Du, Yao, and Huang 2015; Du et al. 2015; Wang, Du,
and Xi 2020), and geometric dimensioning and tolerancing (GD&T) integration (Loose et al. 2010; Wang et al. 2017).
Abellan-Nebot et al. (2012) modelled the spindle-thermal variations and the cutting-tool wear-induced variations during
machining, and this model was called the extended SoV model. Detailed descriptions of existing research work on variation
propagation modelling and applications were provided in a monograph (Shi 2006) and several reviews (Shi and Zhou 2009;
Yang, Jin, and Li 2017a; Rezaei-Malek et al. 2019b). In summary, the researching trend of variation propagation modelling
presents the following rules: from assembling to machining, from fuzzy system description to explicit representation of
variation sources, and the applicable workpieces have become diversified, from simple box workpieces to more complex
parts.

Common workpieces can be divided into three categories according to the structural stiffness: rigid, flexible and variable
stiffness (Li et al. 2019). The stiffness of rigid workpiece is uniform and high such as solid casting without cavities, whereas
that of flexible workpiece such as sheet is relatively low. With the diversification of product functional requirements, work-
piece structure has been increasingly complex, and the stiffness may span a wide range in a single workpiece. For instance,
a four-cylinder engine block as shown in Figure 1 is a typical variable stiffness structure (VSS) workpiece (Shao et al.
2018; Shao et al. 2019). One of the most conspicuous features is that it contains several closely spaced cylinders causing
prominent and continuous change in wall thickness, which decide both the flexural and compressive stiffness in the case of
material isotropic (Li et al. 2019). The flexural stiffness of this engine block varies from 3473 to 1,288,390 NâĹŹm2 as the
wall thickness varies from 13.5 to 97 mm (Du, Liu, and Xi 2015; Shao et al. 2018).

Compared to the rigid body, the overall stiffness of VSS workpiece is low and non-uniform due to the characteristics
of multiple holes and local thin walls, which means when force is applied to the surface of workpiece, the thrust face will
generate a larger deformation. Therefore, reflected in machining process, the locating datum feature will also generate more
remarkable elastic deformation under the external force such as clamping force and cutting force, introducing additional
variations into MMPs.

Figure 2 takes a simplified four-cylinder engine block machining as an example to indicate the effect of these variations
on a VSS workpiece. Under the action of clamping force and cutting force, both the contact points on datum surface
and locators are elastically deformed, and these variations will transmit to KPCs in the form of datum-induced variations
and fixture-induced variations respectively. In addition, the magnitude of deformation differs when the force exerts on the
surface of different structure regions. For example, the structure corresponding to locator 1 or 3 has a lower stiffness for
the existence of cylinder hole, so that the deformation of contact point on datum surface is relatively large. Therefore, the
non-uniform elastic deformation caused by external force during machining has a great influence on the final surface quality
for a VSS workpiece.

However, variation propagation research in MMPs based on state space model all assumes that the workpiece is a
rigid body and omit the elastic deformation in the features, not to mention the impact of workpiece stiffness change on
the magnitude of elastic deformation. Consequently, existing SoV models cannot be readily applied to address the intrinsic

Figure 1. The top view of a typical VSS workpiece.
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Figure 2. Example of elastic deformation variations on VSS workpieces

variation induction and propagation for VSS workpieces. It is necessary to consider the elastic deformation of variable
stiffness structure, so that the SoV models can have better accuracy when facing such workpieces.

Methods available for elastic deformation analysis can be generally divided into numerical methods and analytic
methods (Vasundara and Padmanaban 2014). Numerical method represented by finite element analysis (FEA) has been
extensively applied for its superior applicability and operability, especially in the deformation analysis of complex VSS
workpieces. However, if deformation analysis by FEA is adopted to state space modelling of variation propagation in
MMPs, repeated iterations of multistage processes are hard to perform under huge computationally requirements (Yi et al.
2015). The lack of physical insights (Yi, Cheng, and Xu 2016) will also lead to difficulties in the intrinsic mapping rela-
tionship study from KCCs to KPCs, which will finally limit the further application of SoV model to process capability
controlling and variation source diagnosis. Analytic method represented by elastic mechanics or contact mechanics can
provide the analytic expression of displacement field on deformation point quickly and accurately, which overcomes the
shortcomings of numerical method. However, most of the published analytic methods are limited to rigid or flexible work-
piece, and little research has been done on VSS workpiece due to its complex structure. Recently, Li et al. (2019) proposed
an analytic approach based on elastic mechanics to optimise the fixturing schemes of VSS workpieces. The idea of region
division is meaningful for the deformation analysis of variable stiffness structure.

In this paper, a framework of variation propagation in MMPs for VSS workpieces is proposed to explicitly model the
induction and propagation of elastic deformation variations caused by external force during machining. The elastic deforma-
tion variations on VSS workpieces are innovatively incorporated into the variation propagation model by analytic methods,
which solves the limitation that the current SoV models can only deal with rigid workpieces without considering the stiff-
ness change. That is the main contribution of this paper. Specifically, a cutting force model is developed to obtain the force
distribution. Then, in view of the characteristics of VSS workpieces, region division is adopted and the analytic solutions
of elastic deformation in different regions are solved by contact theory and elastic theory. Finally, the elastic deformation
variations are incorporated into the variation propagation model. The proposed model will furnish quality improvement
practitioners with a more comprehensive tool for accurate process evaluation, and thus, more effective monitoring and diag-
nosis for MMPs. The remainder of the paper is organised as follows. Section 2 shows the framework of the state space model
of variation propagation in MMPs for VSS workpieces. In Sections 3 and 4, the solution of force distribution and elastic
deformation are derived respectively. Section 5 presents the experimental validation results for this model. Concluding
remarks and potential model applications are discussed in Section 6.

2. The proposed state space model

2.1. Random deviation representation

The model considers machining-, fixture- and datum-induced variations, including the elastic deformation variations in
the machining process of VSS workpieces. These variations are introduced by and transmitted among key elements of
manufacturing system, such as fixture locators, workpiece datum features, machined features, cutting-tool, machine-tool
spindle, etc. Describing the stream of variations is equivalent to representing the propagation and conversion of those
variations among key elements.
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2.1.1. Coordinate system definition

Coordinate systems (CSs) involved in the model are defined to represent the variations of key elements (The notion with
left superscript ‘0’ means the nominal condition):

(1) Design coordinate system (DCS) is the reference for workpiece features during design. This CS will not deviate
and it is generally defined at an accessible corner.

(2) Reference coordinate system (RCS) defines the reference for the position and orientation of all workpiece features at
a specific stage, and it is generally defined the same as the local CS of the primary datum feature for simplification.

(3) Fixture coordinate system (FCS) defines the position and orientation of fixture according to the fixture layout, and
it determines the position of each locator.

(4) Local coordinate system (LCS) is associated with one specific feature on workpiece, and it represents machined
feature’s position and orientation.

(5) Machine-tool component coordinate system (MCCS) is the CS collection of machine-tool (MCS), axes (ACS),
spindle (SCS), cutting-tool (CCS) and cutting-tool tip (TPCS), which defines the position and orientation of each
component of the machine-tool. The specific definition can refer to Abellan-Nebot et al. (2012).

These defined CSs can establish a generic framework for expressing the variations induction and propagation from
TPCS to DCS along a chain. The chain consists of two sub-chains. The first sub-chain (from MCS to TPCS) has been
well studied by Abellan-Nebot et al. (2012) which represents the impact of machining-induced variations including thermal
spindle expansions and cutting-tool wear. The second sub-chain (from MCS to DCS) represents the effects of fixture- and
datum-induced variations, including the elastic deformation variations for VSS workpieces which have not been studied.

2.1.2. Variation representation

To better define DMV for variation propagation, two CSs are constructed to express the location and variation relation. The
position and the orientation of CSA w.r.t. CSB are defined by rB

A = [
(tB

A)T (ωB
A)T
]T

which consists of a translation vector

tB
A = [

xB
A yB

A zB
A

]T
and a rotation vector ωB

A = [
αB

A βB
A γ B

A

]T
. The projections of CSA coordinate origin on the three

coordinates of CSB are xB
A, yB

A, zB
A and the orientation of CSA coordinate axes can be obtained by sequentially rotating CSB

around z, y and z axes with Euler angles αB
A , βB

A , γ B
A respectively.

The random deviation of a feature can be represented by DMV of its own CS w.r.t. another CS (Paul 1981). If CSA

is LCSi and CSB is RCS, the position and orientation of a specific feature w.r.t. the reference is rB
A, and the corresponding

random deviation is defined by a DMV xB
A =

[
(dB

A)
T

(θB
A)

T
]T

, where dB
A = �tB

A = [
�xB

A �yB
A �zB

A

]T
contains three

small translation deviations and θB
A = �ωB

A = [
�αB

A �βB
A �γ B

A

]T
contains three small rotation deviations.

The DMV representation of random deviations is the basis for variation propagation modelling and DMVs can be
transmitted by the following corollary to model the propagation and accumulation of deviations along the CSs chain (Zhou,
Huang, and Shi 2003):

Corollary: Consider feature 1, 2 and RCS as shown in Figure 3. Feature 1 and 2 deviate from their nominal positions and
orientations. Denoting xR

1 as the deviation of CS1 w.r.t. RCS, xR
2 as the deviation of CS2 w.r.t. RCS, and x1

2 as the deviation
of CS2 w.r.t. CS1, the relationships among xR

1 , xR
2 and x1

2 can be described by

xR
2 =

(
(0R1

2)
T −(0R1

2)
T · (0 t̂1

2) I3×3 03×3

03×3 (0R1
2)

T 03×3 I3×3

)
·
(

xR
1

x1
2

)
= Q1

2 · xR
1 + x1

2 (1)

Figure 3. Transition of DMV when 1 and 2 deviate.
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x1
2 =

(
−(0R1

2)
T

(0R1
2)

T · (0 t̂1
2) I3×3 03×3

03×3 −(0R1
2)

T 03×3 I3×3

)
·
(

xR
1

xR
2

)
= −Q1

2 · xR
1 + xR

2 (2)

where 0R1
2 is the rotation matrix of 0CS2 w.r.t. 0CS1, and 0 t̂1

2 is the skew symmetric matrix associated with the translation
vector 0t1

2.
Assuming that there are M features on a workpiece and the deviation of the nth feature w.r.t. RCS at stage k is a DMV

xRCS
k,n (n = 1, 2, . . . , M ), the state vector x(k) =

[
(xRCS

k,1 )T (xRCS
k,2 )

T · · · (xRCS
k,M )

T
]T

is a stack of DMVs that represents the

deviations that have been generated on a workpiece after k stage.

2.2. Framework for incorporating elastic deformation variations

Based on the vectorial deviation representation by DMVs, variation propagation in an N-stage MMP can be described by
the state space model (Zhou, Huang, and Shi 2003):

x(k) = A(k − 1) · x(k − 1) + B(k) · u(k) + w(k) (3)

y(k) = C(k) · x(k) + v(k) (4)

where A(k − 1) · x(k − 1) represents the deviations transmitted by the datum features introduced from previous stages;
B(k) · u(k) represents the deviations induced at current stage due to fixture-induced variations and machining-induced vari-
ations; C(k) · x(k) represents the deviations of KPCs in the measurement; w(k) and v(k) define the un-modelled system
errors and the measurement noise respectively. The coefficient matrices A(k − 1), B(k) and C(k) are determined by product
and process information.

The process variations at stage k are denoted as u(k) =
[
(uk

f )
T

(uk
m)

T
]T

, where uk
f = [�lk

1 �lk
2 �lk

3 �lk
4 �lk

5 �lk
6]T

is the wear deviation of fixture locators and uk
m is the machining-induced variations that models the overall deviation of

the first sub-chain, i.e. xMCS
TPCS. uk

m has been well built with the consideration of spindle-thermal variations and cutting-tool
wear variations (Abellan-Nebot et al. 2012) while the modelling of x(k − 1) and uk

f in Equation (3) for VSS workpieces

Figure 4. Summary of the procedure to derive the extended state space model.
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is imperfect due to the omission of elastic deformation on datum features and locators. For workpiece datum feature, the
elastic deformation is generated during the machining process at stage k, and these variations are only limited to the contact
areas with locators, so it is difficult to express the elastic deformation variations on datum feature by linear DMV x(k − 1).
Therefore, in this paper, the deformation of datum feature and locator is integrated at the contact point as �k

i and the stack
of integrated deformation Δk = [�k

1 �k
2 �k

3 �k
4 �k

5 �k
6] is added as a new part to the wear deviation of fixture locators,

i.e. u(k) =
[
(uk

f + Δk)
T

(uk
m)

T
]T

for the extended framework of variation propagation in MMPs for VSS workpieces.

In this way, the elastic deformation of datum contact points and locators can be fully considered, and these variations are
only embodied and controlled in state space model by the form of fixture-induced variations, eliminating the need to study
complex nonlinear form error.

The framework of the proposed method is shown in Figure 4, and the main steps are described as follows.

• Step 1: Develop an exponential instantaneous cutting force model of the face milling process to obtain the cutting
force during machining. Combine the clamping force and the equilibrium condition to obtain the force distribution
at the contact points for maintaining the stability of the manufacturing system.

• Step 2: Analyse the elastic deformation on contact stress points for VSS workpiece machining. A division strategy
is implemented to divide the VSS elastomer into two types of characteristic regions denoted by pier and span.
The analytic solutions of deformation field in different regions are derived using contact mechanics and elastic
mechanics.

• Step 3: Superimpose total deformation Δk on the wear deviation of fixture locator, incorporating the elastic
deformation variations into state space modelling of variation propagation in MMPs for VSS workpieces.

3. Force analysis

Locating and clamping is to keep the workpiece stable in desired position and orientation during the machining process
(Abellan-Nebot et al. 2012). The objective of this section is to obtain the force distribution at the contact points between
locators and datum feature when the workpiece maintains static equilibrium under the action of cutting force and clamping
force during the machining process.

3.1. Exponential instantaneous cutting force model

For an N-tooth face milling cutter as shown in Figure 5(a), the cutting edge of each tooth is divided into M micro elements.
dFj,l is the cutting force of the lth micro element on the cutting edge of jth tooth, where l = 1, 2, . . . , M and j = 1, 2, . . . , N .
It is determined by the cutting-tool/workpiece material, instantaneous cutting thickness and micro element’s height, and it
can be decomposed to tangential force dFt, radial force dFr and axial force dFa as shown in Figure 5(b). Transforming to

Figure 5. Cutting force modelling for milling process.
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MCS, the cutting force components of dFj,l along x, y, and z axes can be represented as

⎧⎨
⎩

dFx = Ktchdz + Ktedz = −dFt,j,l cos φj,l − dFr,j,l sin φj,l

dFy = Krchdz + Kredz = dFt,j,l sin φj,l − dFr,j,l cos φj,l

dFz = Kachdz + Kaedz = dFa,j,l

(5)

where Ktc, Krc, Kac, Kte, Kre and Kae are undetermined coefficients depending on the type of cutting force model; dz is the
height of micro element; h = fz sin φj,l is the instantaneous cutting thickness, where fz is the feed per tooth and φj,l is the
radial immersion angle.

For the exponential instantaneous model (Hoon Ko and Cho 2005; Wan et al. 2009), the cutting force coefficients are
given as follows: Kte = Kre = Kae = 0, Ktc = Kth−p, Krc = Krh−q, Kac = Kah−r, where Kt, Kr and Ka denote the tangential,
radial and axial force coefficients while p, q, r are the corresponding cutting thickness index. Consequently, for each round
of the cutter, the average cutting force components along x, y, and z axes can be calculated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FA,x = apN

2π
Krfz

1−q
∫ π

0 (sin φ)2−qdφ

FA,y = apN

2π
Ktfz

1−p
∫ π

0 (sin φ)2−pdφ

FA,z = apN

2π
Kafz

1−r
∫ π

0 (sin φ)1−rdφ

(6)

Dividing both sides of the Equation (6) by apN and taking the logarithm, a linear expression with ln fz as the independent
variable can be derived as

ln

(
FA,q

apN

)
= Bq ln fz + Aq, q = x, y, z (7)

Aq and Bq can be fitted by the least square method (Wan et al. 2014) through a series of experimental tests of cutting
force using different cutting parameters. Therefore, the formulas for calculating the cutting force coefficient are given as
follows ⎧⎪⎨

⎪⎩
q = 1 − Bx, p = 1 − By, r = 1 − Bz

Kr = 2πeAx∫ π

0 (sin φ)1+Bx dφ
, Kt = 2πeAy∫ π

0 (sin φ)1+By dφ
, Ka = 2πeAz∫ π

0 (sin φ)Bz dφ

(8)

3.2. Force distribution

Strategically placing locators and clamps around the workpiece and applying the clamping force with appropriate magnitude,
fixture scheme can achieve accurate locating during machining. By regarding the fixture-workpiece as an integrated system,
the static equilibrium conditions for stability are analysed to calculate the force distribution exerting on the contact points
between the locators and the datum surfaces.

As shown in Figure 6, the clamping force in x direction is provided by the screw rod of a clamping chuck device. To
maintain the static equilibrium of the fixture-workpiece system, the fixed clamping force FC exerted by the chuck with three
clamps should be much bigger than cutting force FA,x, which means the combination of external force still exerts a force
on the clamping surface. Therefore, the counterforce from locators is applied on the datum contact points, causing elastic
deformation on datum feature and locators, which eventually leads to the location error.

Supposing that the coordinates of these three contact points are (0, y1, z1), (0, y2, z2) and (0, y3, z3) w.r.t. CSL respectively.
According to the static equilibrium conditions, the force distribution in each contact point i.e. FL1, FL2 and FL3 can be
obtained by the following equation set. ⎧⎨

⎩
FC − FA,x = FL1 + FL2 + FL3

FL1 · |y1| − FL2 · |y2| − FL3 · |y3| = 0
FL1 · |z1| − FL2 · |z2| + FL3 · |z3| = 0

(9)

Similarly, it is also possible to calculate the force distribution in the case of the direction has different numbers of
locators. The force distribution will be the load input for following elastic analysis and contact analysis.
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Figure 6. Force distribution of locators.

4. Elastic deformation analysis

The external force-induced deformation is hard to calculate directly due to the complex structure of VSS workpieces. In this
section, a novel systematic method based on elastic mechanics and contact mechanics is derived for deformation analysis.
The deformation analytic solutions of datum contact points and locators are given.

4.1. Region division

As illustrated in Figure 2, the magnitude of deformation is non-uniform when the force exerts on the surface of different
structure regions due to the variable stiffness feature. Therefore, for VSS workpieces, it is practically impossible to analyti-
cally calculate the displacement fields for all contact points on datum surface by a universal formula. To address this issue,
a region division strategy is proposed.

For a simplified four-cylinder engine block that retains the most important geometric feature, it is firstly divided into
three regions by two parallel sections as shown in Figure 7, where a, b, H denote the length, width, height of the engine
block respectively and Rb denotes the radius of the cylinder. Constrained by practical processing conditions, three pairs of
locator-clamp are concentrated on the primary locating datum plane and its opposite plane, i.e. resultant of external force
perpendicularly exerts on the flank of region 1 while the counterforce from three locators exerts to the flank of region
2. According to the characteristics of variable stiffness (Li et al. 2019), region 2 can be further divided into several sub-
regions, including two types: pier region and span region. Since different sub-regions have different stiffness conditions,
this region division strategy facilitates the calculation of non-uniform elastic deformation of corresponding sub-region
separately.

Figure 7. Region division of a simplified four-cylinder engine block.
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Figure 8. The contact of pier region.

4.2. Pier region deformation

The pier region has two major characteristics: the stiffness is relatively high and there is no need to consider the influence of
variable stiffness. Without loss of generality, it is assumed that fixtures are based on spherical locators and datum surfaces
are planar.

Considering the counterforce from locator is perpendicularly exerted on the flank of a pier region, this problem can
be equivalent to the classic Boussinesq problem (Gao et al. 2013), i.e. elastic analysis of the semi-infinite space whose
boundary is exerted with a vertical load. Hertz contact theory can be directly adopted to solve the total deformation of
locator and datum feature.

As shown in Figure 8(a), according to Hertz contact theory (Yeh and Liou 1999), the total contact deformation δ for two
elastic bodies with curved surfaces are as follows

δ = δ1 + δ2 =
(

9

16 · R∗ · E∗2

)1/3

· F2/3 (10)

where F is the total compression load which can be derived from force distribution in Section 3.2; R∗ and E∗ are the
equivalent radius and the equivalent Young’s modulus of two contact bodies respectively. These two parameters are defined
by

⎧⎪⎨
⎪⎩

1

R∗
= 1

R1
+ 1

R2
1

E∗
= 1 − υ1

2

E1
+ 1 − υ2

2

E2

(11)

where R1 and R2, E1 and E2, υ1 and υ2 are the radii, Young’s moduli and Poisson ratios of two contact bodies respectively.
For the contact between a spherical locator and planar datum surface as shown in Figure 8(b), the radius of the plane is
infinite, i.e. R2 → ∞, so that R∗ is equal to the radius of locator R1. The result of Equation (10) is the total deformation of
locator and the datum feature, i.e. �k

i = δ when the locator i is contact with pier region. Note that for the contact between
any other type of fixture locators and datum surfaces, Equation (10) can be modified accordingly (Yeh and Liou 1999).

4.3. Span region deformation

The main characteristic of span region is that the flexure stiffness is relatively low and it is not constant. Therefore, the span
region can be deemed as an elastic plate with variable stiffness (Li et al. 2019). The compression load F is the input of the
elastic analysis for span region. Since the flexural stiffness of locator is much larger than that of the workpiece when the
force is applied to the span region, the elastic deformation of locator can be omitted. The analytic solution of datum surface
deformation can be calculated by elastic mechanics method based on the double trigonometric series expansion.

Before the elastic analysis, three hypotheses and one lemma listed in Timoshenko and Goodier (1971) should be intro-
duced, which are all commonly used in elastic mechanics. When F is perpendicularly loaded on the flank of a span region as
shown in Figure 9(a), the basic equations of elastic analysis, including strain displacement equations and elastic constitutive
equations are demonstrated as follows:
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Figure 9. The elastic deformation analysis of span region.

The strain displacement equations are given as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx = ∂u

∂x
= −z

∂2w

∂x2
= zκx

εy = ∂v

∂y
= −z

∂2w

∂y2
= zκy

γxy = ∂v

∂x
+ ∂u

∂y
= −2z

∂2w

∂x∂y
= 2zκxy

(12)

where εx, εy and γxy denote the normal strain along the x-axis, y-axis and the shear strain respectively while κx, κy and κxy

denote the curvatures along the x-axis, y-axis, and the twist rate respectively.
The elastic constitutive equations are given as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σx = E

1 − υ2
(εx + υεy)

σy = E

1 − υ2
(εy + υεx)

τxy = E

2(1 + υ)
γxy

(13)

where σx, σy and τxy denote the normal stress along the x-axis, y-axis and the shear stress respectively.
Substituting Equation (12) into (13), yields

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx = − Ez

1 − υ2

(
∂2w

∂x2
+ υ

∂2w

∂y2

)
= Ez

1 − υ2
(κx + υκy)

σy = − Ez

1 − υ2

(
∂2w

∂y2
+ υ

∂2w

∂x2

)
= Ez

1 − υ2
(κy + υκx)

τxy = − Ez

1 + υ

∂2w

∂x∂y
= Ez

1 + υ
κxy

(14)

For obtaining the deflection equation and the boundary conditions of elastic analysis, an elastic micro element of elastic
plate is shown in Figure 9(b), where dx, dy and h represent the length, width and height of the micro element respectively.
The internal moment of this micro element is given by Timoshenko and Goodier (1971)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mx = ∫ h/2
−h/2 σxzdz = −D

(
∂2w

∂x2
+ υ

∂2w

∂y2

)
= D(κx + υκy)

My = ∫ h/2
−h/2 σyzdz = −D

(
∂2w

∂y2
+ υ

∂2w

∂x2

)
= D(κy + υκx)

Mxy = ∫ h/2
−h/2 τxyzdz = −D(1 − υ)

∂2w

∂x∂y
= D(1 − υ)κxy

(15)
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where D is the flexural stiffness and it can be defined as

D = E · h3

12(1 − υ2)
(16)

Denoting the external load function as F(x, y), the deflection equation can be given as follows

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= F(x, y)

D
(17)

And the boundary conditions for a single span region can be derived as

⎧⎨
⎩w = 0,

∂2w

∂x2
= 0 for x = 0 and La

My = 0, Myx = 0 for y = 0 and Lb

(18)

where La =
√

4Rb
2 − d3

2, Lb = H are the length and width of the flank of span region and both are constants which can be
obtained directly from Figure 7.

Under the given boundary conditions, the double trigonometric series expansion (Tang and Liu 2008; Zhang et al. 2016)
is applied to the external load F(x, y) and the deflection w(x, y) as Equations (19) and (20), so that the analytic solution to
the deflection can be eventually obtained in the form of a function of the given load based on the properties of the double
trigonometric series.

F(x, y) =
∞∑

m=1

∞∑
n=1

Amn sin
mπx

La
sin

nπy

Lb
(19)

w(x, y) =
∞∑

m=1

∞∑
n=1

Bmn sin
mπx

La
sin

nπy

Lb
(20)

where Amn and Bmn are two coefficients listed as follows and the detailed derivation can be found in the Appendix based on
the orthogonality of trigonometric functions.

Amn = 4

LaLb

∫ Lb

0

∫ La

0
F(x, y) sin

mπx

La
sin

nπy

Lb
dxdy (21)

Bmn = Amn

π4D · ((m2/L2
a) + (n2/L2

b))
= 4

∫ Lb

0

∫ La

0 F(x, y) sin(mπx/La) sin(nπy/Lb)dxdy

π4D · LaLb · ((m2/L2
a) + (n2/L2

b))
(22)

Substituting Equation (22) into (20), the deflection w(x, y) can be obtained as

w = 4

π4 · LaLb · D
·

∞∑
m=1

∞∑
n=1

∫ Lb

0

∫ La

0 F(x, y) sin(mπx/La) sin(nπy/Lb)dxdy

((m2/L2
a) + (n2/L2

b))
sin

mπx

La
sin

nπy

Lb
(23)

Since the thickness of a span region h(x) varies continuously along the x-axis direction, the flexural stiffness D(x) can
be derived based on Equation (16) as

D = E

12(1 − υ2)
·
⎡
⎣b

2
−
√

Rb
2 −

(
La

2
− x

)2
⎤
⎦

3

(24)

Therefore, the result of Equation (23) is the deformation of datum feature, i.e. the deformation analytic solution is
�k

i = w when the locator i is contact with span region.
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Figure 10. A four-cylinder engine block.

Table 1. Process description and nominal locations of key features.

Stage Datum features Process descriptions 0ωR
0

0tR
0

OP10 T1, T2, T3, U1, U2, W Mill #299 [0, 0, 0] [ − 170.5, 138, 0]
OP20 T1, T2, T3, U1, U2, W Semi-finish-mill #399 [0, − π /2, π /2] [ − 219, 248, − 30.5]

Semi-finish-mill #499 [0, π /2, π /2] [18, 248, − 30.5]
OP30 T1, T2, T3, U1, U2, W Spot drill #401 [π /2, 0, 0] [18, 73, − 312.5]

Spot drill #402 [0, 0, π /2] [18, 27, − 17]
OP40 #499, #401, #402 Spot drill #201 [ − π /2, 0, 0] [ − 176.5, 201, 0]

Spot drill #202 [0, π /2, 0] [0, 0, 0]
OP50 #299, #201, #202 Finish-mill #499 [0, π /2, π /2] [17.5, 248, − 30.5]
OP60 #499, #401, #402 Finish-mill #399 [0, − π /2, π /2] [ − 218.5, 248, − 30.5]

5. Case study

To verify the proposed variation propagation model for VSS workpieces, a six-stage machining process of the four-cylinder
engine block (see Figure 10) is applied in this case.

The process is implemented by a DMG-HSC-75 computer numerical control (CNC) machining centre. Table 1 describes
the six stages, illustrates the datum features in each stage and the nominal locations of key features w.r.t. RCS. Specifically,
first two stages are milling processes, followed by spot drilling hole #401 and #402. T1, T2, T3, U1, U2 and W are rough
datum features for OP10 to OP30. The deviation of #499 machined at OP20 and the deviations of two holes drilled at
OP30 are important variation sources for the machining features at OP40 and OP60. Similarly, the datum-induced errors
from OP10 and OP40 accumulate deviations at OP50, which construct the stream of variation. After OP60, the machined
workpiece is moved to the inspection stage to measure two KPCs defined by the surface #399 and #499.

Considering the locating and clamping scheme of each stage, the primary datum feature of OP10 to OP30 (T1, T2 and
T3) is on the flank of the engine block, and that of OP50 is the end face #299. In these four stages, due to the existence of the
cylinder, the stiffness of the workpiece in primary locating direction is relatively low and the stiffness change is significant,
which will bring additional elastic deformation variations to MMP under the action of cutting force and clamping force.
These variations are difficult to introduce and propagate in the previous SoV models.

In this section, the cutting force coefficients are firstly solved by least squares fitting based on a series of experiments,
and the calculated cutting force is combined with the clamping force to obtain the force distribution at the contact points,
which is the input of following elastic deformation analysis. In the verification step, two KPCs’ deviations obtained by the
proposed method are compared to real machining process and existing SoV methods to prove the validity and accuracy of
the new model. The predefined parameters in this case are listed in Table 2.

5.1. Elastic deformation variations

5.1.1. Cutting force coefficient experiments

In order to obtain the coefficients Aq and Bq of the exponential instantaneous cutting force model, nine groups of experiments
are implemented to measure the cutting force for univariate linear regression of Equation (7). The experiments are performed
on a quarter of engine block by DMG-HSC-75 CNC machining centre, and Table 3 gives the experiment parameters in



International Journal of Production Research 4045

Table 2. Predefined parameters.

Description (symbol) Value

length of the engine block (a) 326.5 mm
width of the engine block (b) 108 mm
height of the engine block (H) 236 mm
radius of the cylinder (Rb) 35 mm
radius of the locator (R1) 5 mm
distance from the first centre line to the front face (d1) 50 mm
distance between two adjacent centre line (d2) 75.5 mm
distance between two sections (d3) 30 mm
poisson ratio of locator (high carbon steel) (v1) 0.25
poisson ratio of grey cast iron HT250 (v2) 0.27
elastic modulus of locator (high carbon steel) (E1) 200 GPa
elastic modulus of grey cast iron HT250 (E2) 140 GPa

Table 3. Machining parameters for each group.

No. N ap (mm) fz (mm)

1 6 0.1 0.1
2 8 0.15 0.12
3 10 0.2 0.14
4 8 0.12 0.16
5 10 0.17 0.18
6 6 0.22 0.2
7 10 0.08 0.22
8 6 0.12 0.24
9 8 0.18 0.26

detail. Since the machining parameter of V s has no effect in Equation (7), it is preliminary fixed to 400 rpm in each group
of experiment.

The raw cutting force signals are measured by 9027C Kistler three-component dynamometer. The signals are intercepted
for 8 s in stable machining phase and processed by a 2-order low pass filter. The lower edge frequency of the filter is 50 Hz
and the upper one is 100 Hz. The filtered cutting force signals are shown in Figure 11.

By calculating the average magnitude of cutting force along each coordinate axis under different groups of experiment
parameter, the point estimation based least square method is applied to Equation (7) to estimate the coefficients of regression
equation, i.e. undetermined coefficients of the cutting force model. The significance test of regression equation shows a
significant linear correlation, so the results are reasonable. Table 4 shows the cutting force coefficients in all directions
along the coordinate axis, which can be adopted to calculate the cutting force in primary locating direction and served as
the input to the following elastic deformation analysis.

5.1.2. Solution of elastic deformation

Based on the cutting force and the predetermined clamping force, for the stages that need to consider elastic deformation
variations, the force distributions at the contact points between locators and datum features can be calculated by the method
of Section 3.2. For the first two stages, the force distribution is 101, 152 and 130 N at three contact points in primary locating
direction, of which L1 and L3 correspond to the span region and L2 corresponds to the pier region. The magnitude of elastic
deformation at L1 and L2 is calculated in detail in this section, and the deformation of L3 and other stages, such as OP50,
can be solved similarly to obtain the integrated deformation Δ.

(a) Deformation of the pier region corresponding to L2

The force known as 152 N is perpendicularly exerted on the flank of a pier region as shown in Figure 8(b). The material
of the engine block is the grey cast iron HT250 and that of the locator is high carbon steel. The necessary information of
material is given in Table 2. The equivalent radius and the equivalent Young’s modulus are{

R∗ = R1 = 5 mm

E∗ =
(

1−0.252

2×1011 + 1−0.272

1.4×1011

)−1
= 88.42 GPa
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Figure 11. The filtered cutting force signal of nine sets of experiments.

Table 4. Undetermined coefficients of cutting force model.

Coefficient Ax Ay Az Bx By Bz

Value 6.5408 6.8744 7.1703 0.2413 0.3341 0.5113

According to Equation (10), the total contact deformation δ is calculated as

δ =
(

9

16 × 0.005 × (88.42 × 109)
2

)1/3

· 1522/3 = 6.93 × 10−6 m = 0.00693 mm

(b) Deformation of the span region corresponding to L1

The force known as 101 N is perpendicularly exerted on the flank of a span region as shown in Figure 9(a). The coor-
dinate of the stress point is PS (42, 31, 0) w.r.t. the local CSS. According to Equation (23), the deformation w is calculated
as

w = 4 × 12 × 101(1 − 0.272)

π4 × 64 × 236 × 1.4 × 105 ×
[
54 −

√
352 − (32 − x)2

] ·
∞∑

m=1

∞∑
n=1

sin(42mπ/64) sin(31nπ/236)

((m2/642) + (n2/2362))
sin

mπx

64
sin

nπy

236

By MATLAB programming, the displacement field of datum surface is shown in Figure 12. When the iteration times
exceed 12, the displacement field stays approximately the same, which demonstrates the fast convergence of the dou-
ble trigonometric series method in solving elastic deformation of the span region. Although the force on span region is
much smaller than that on pier region, the magnitude of deformation is more significant due to the characteristics of VSS
workpiece. The maximum deformation at this contact point is 0.0207 mm, and its impact should not be ignored in MMPs.

(c) Finite element simulation

To validate the magnitude of the elastic deformation calculated by proposed approach, a dynamic explicit FEA is adopted
to simulate the machining process by the software of ABAQUS. In the mesh, there are 1,887,415 nodes and 4,264,337
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Figure 12. Deformation of a span region by double trigonometric series method.

Figure 13. Dynamic explicit FEA simulation.

elements for discretization, and Figure 13(a) depicts part of the mesh. To ensure the convergence and accuracy of FEA
simulation, 1,168,234 of the elements are linear hexahedral elements of type C3D8 to improve the quality of the mesh. In
the load module of FEA, external forces from clamps and cutting tool are exerted as shown in Figure 13(b). The boundary
conditions and all input parameters are the same as the real machining. The average elastic deformation of contact point in
primary locating direction is the focus.

The visualisation simulation output at a certain time is shown in Figure 13(c). In the process, the average deformation
of L2 is 0.00716 mm and that of L1 is 0.0225 mm. Compared with the results by analytic calculations respectively, small
differences prove the accuracy of the proposed approach in elastic deformation solution.

5.2. Results and discussion

To validate the model, some significant variation sources were intentionally added to the engine block machining process
at each stage. For example, the machining operations were conducted with a spindle temperature close to 25°C to define
the spindle-thermal variations, and a worn cutting-tool was used with a flank wear of 0.01 mm to define the cutting-tool
wear-induced variations. The fixture error of first three stages was equal to [0.018, 0, 0.023, 0.012, 0, 0] and that of last
three stages was [0, 0, 0.019, 0, 0, 0]. The real machining process is shown in Figure 14.

Following the procedure illustrated in Section 2, a variation propagation model for this six-stage machining process can
be obtained and it is programmed using MATLAB. All vectors and matrices can be calculated by corresponding equations.
The dimensions of two KPCs are measured by coordinate measuring machine (CMM) after MMP, and the comparison
between experimental results, conventional SoV model, extended SoV model, and the proposed model are presented in
Table 5 and Figure 15.
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Figure 14. Real machining experiment.

Table 5. The results of measurement and model prediction.

Conventional model Extended model Proposed model

Object CMM Prediction Error Prediction Error Prediction Error

z (mm) #399 218.576 218.6232 0.0472 218.6084 0.0324 218.6037 0.0277
#499 17.469 17.4746 0.0056 17.4728 0.0038 17.4719 0.0029

The superiority of the proposed model is discussed in two aspects: the comparison with real experiment results and the
comparison with existing methods.

For the former one, the overall differences between the predicted values and actual measurements are reasonably small
for both two KPCs, which illustrate the validity of the model. For example, the measurement result of surface #399 w.r.t.
the origin of RCS is 218.576 mm, compared to 218.6037 mm predicted by the proposed model. The prediction error of
0.0277 mm is very small relative to the measured value. Another KPC of surface #499 presents the similar situation. The

Figure 15. Deviation results comparison.
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main reason for this small discrepancy is accounted to the noises which are difficult to model, such as the influence of
vibration on machining processes or measurements.

For the comparison of the proposed model and existing methods, the advantages can be reflected in high accuracy and
applicability. The conventional SoV model can only focus on the modelling of fixture-induced variations and datum-induced
variations, other error factors such as cutting-tool wear, spindle-thermal variations, and elastic deformation variations are
all treated as stochastic noises, i.e. w(k) in Equation (3). Therefore, the prediction error of conventional SoV model is the
highest when these variation sources are intentionally added to the MMP. The extended SoV model incorporates some
important machining-induced variations, so that the prediction errors of the two KPCs are decreased by 31.4% and 32.1%
respectively, indicating the progress of SoV modelling. However, due to the neglect of the elastic deformation variations
in VSS workpiece machining, the prediction error is still relatively large, which means neither of these two representative
methods can accurately deal with VSS workpieces. The proposed model focuses on the variable stiffness structure of the
workpiece and effectively considers the elastic deformation variations on MMP for VSS workpieces. It further reduces the
inaccurately modelled parts of w(k), which means the prediction variance can be significantly smaller than that of previous
methods. The accuracy on these two KPCs is increased by 14.5% and 23.7% respectively compared to extended SoV model,
which means an average prediction improvement of 44.76% with respect to the conventional model when the machining
object is a VSS workpiece and the elastic deformation variations are incorporated.

6. Conclusion

In spite of the success of SoV methods for variation propagation modelling in MMPs, the absence of elastic deformation
variations may be an important factor to limit the use of this methodology. In this paper, a generic framework for incorpo-
rating the elastic deformation variations into the existing SoV models is proposed. This framework explicitly models the
induction and propagation of elastic deformation variations during machining, and solves the limitation that the current SoV
models can only handle rigid workpieces without considering the stiffness change. In view of the characteristics of VSS
workpieces, region division is adopted and the analytic solutions of elastic deformation in different regions are solved by
contact theory and elastic theory. The MMP of a four-cylinder engine block is presented in the case study, the prediction
errors from the proposed model are notably lower than those from the existing SoV models, confirming the potential use of
this model for VSS workpieces. Except for the engine block, with the diversification of products, this model can be applied
to the production of more common workpieces as well, which only needs to be appropriately divided into regions based on
the characteristics of the workpiece and solved by regions.

The current research of variation propagation is limited to the dimension error. Multi-scale variations including geomet-
ric error, waviness and roughness also participate in the variation propagation and accumulation, which lead to the overall
deviations of machining feature. The study on the impacts of multi-scale variations to MMPs will be further investigated
in future work. Furthermore, the proposed SoV model can be applied: (i) to optimise the layout of the fixture locators, and
(ii) to some new applications for quality control of MMPs. For the first point, the placement of the fixture locators will have
a great influence on the magnitude of elastic deformation during the VSS workpiece machining. By minimising the final
deviations of KPCs, the optimal fixture layout can be obtained from the candidates by the optimisation algorithm. For the
second point, the applications of this model will have great engineering values for VSS workpieces, such as process control
and improvement, process-oriented tolerancing, and fault diagnosis.
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Appendix
Derivation of Amn and Bmn, i.e. Equations (21) and (22):

Based on the orthogonality of trigonometric functions in Equation (A.1).∫ La/2

0
sin

mπx

La
sin

m′πx

La
dx =

{
0 for m �= m′
La/2 for m = m′ (A.1)

Multiplying both sides of Equation (19) by sin(mπx/La) sin(nπy/Lb), and integrating x and y in [0, La] and [0, Lb] respectively, the
left side and right side of Equation (19) after conversion can be derived as{

Left = ∫ Lb
0

∫ La
0 F(x, y) sin mπx

La
sin nπy

Lb
dxdy

Right = Amn · ∫ Lb
0

∫ La
0 sin mπx

La
sin mπx

La
sin nπy

Lb
sin nπy

Lb
dxdy = Amn · La

2 · Lb
2

(A.2)

Therefore, the coefficient Amn is

Amn = 4

LaLb

∫ Lb

0

∫ La

0
F(x, y) sin

mπx

La
sin

nπy

Lb
dxdy (A.3)
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Substituting Equation (20) into the deflection Equation (17)

π4D ·
∞∑

m=1

∞∑
n=1

(
m2

La
2 + n2

Lb
2

)
Bmn sin

mπx

La
sin

nπy

Lb
= F(x, y) (A.4)

Then, substituting Equation (A.3) into Equation (19) and then further substituting into Equation (A.4)

π4D ·
∞∑

m=1

∞∑
n=1

(
m2

La
2 + n2

Lb
2

)
Bmn sin

mπx

La
sin

nπy

Lb
=

∞∑
m=1

∞∑
n=1

Amn sin
mπx

La
sin

nπy

Lb
(A.5)

For any {(x, y)|0 < x < La, 0 < y < Lb}, coefficients of the trigonometric series on both sides of Equation (A.5) should be
correspondingly equal, thus

Bmn = Amn

π4D · ((m2/L2
a) + (n2/L2

b))
= 4

∫ Lb
0

∫ La
0 F(x, y) sin(mπx/La) sin(nπy/Lb)dxdy

π4D · LaLb · ((m2/L2
a) + (n2/L2

b))
(A.6)
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